Scavenging amphipods and isopods – a novel marine resource?

Snorre Bakke, Ola Ween, Trygg Barnung, Kari Lisbeth Fjørtoft Møreforsking Marin, Postbox 5075, N-6021 Ålesund, Norway

Background

 ✓ Large quantities of scavenging crustaceans destroy catch and eat the bait in fish pots and long-line fishing (Conlan 1994; Jákupsstovu et al. 2002).

 ✓ The proven dissemination and large quantities have led to question on the commercial value of these species as feed & food supplements.

✓ The fishing industry show interest for raw material with a putative commercial value.

Results

Fatty acid profiles

Aims

✓ DEVELOP CATCH TECHNOLOGY FOR EFFICIENT SAMPLING OF SMALL, SCAVENGING CRUSTACEANS

✓ PERFORME INITIAL CHEMICAL & BIO-CHEMICAL
PROFILING

Material & Methods

Development of novel pot technology

Performed in co-oporation with the Refa Frøystad Group (RFG) and Sanden Skjellprodukter. Different prototypes were tested in the Valderhaugfjord (Ålesund, Norway). Concluions were drawn after evaluation of triplicate experioments using 500 g mackerel as bait.

Chemical and biochemical profiling

Sampling: Whole specimens of the amphipod (*Tmetonyx cicada*) and the isopod (*Natatolana borealis*) collected between August - September 2010 were stored at – 40°C until analysis. Amphipods and isopods were screened for total protein, total lipids, metals (Zn, Cu, Cd, Fe, Hg, Pb, Sn,), brominated flame retardants (PBDEs, PBDFs) PCBs, dioxines and furanes using quality approved methods (EUROFINS, Amsterdam).

Figure 1: Prototype pot 6. PVC-tube perforated with 5 mm drill holes (1.) with polyester closing net at the bottom (200 μ m). The top of the pot consist of a screw-cap and a polyester closing net (200 μ m) (3.). The box containg bait is shown centered (5).

A prototype pot was developed (prototype#6) showing satisfactory results regarding quantity and quality. This prototype pot efficiently trapped isopods and amphipods in the range of 1- 10 kgs.

Figure 2: Pictures from field studies.

Chemical profiling

Fat, SBR	3.8	g/100 g	30%	NMKL 131	0.1
Protein					
Crude Protein Nx6.25	10.0	g/100 g	10%	NMKL 6	0.3

Table 1: Total lipid and protein in the amphipod *T.cicada*. The results are shown withuncertainty of measurments in %, method and limit of quantitation

· · · · · · · · · · · · · · · · · · ·	0,550	050,50	420,94	0,05
2 C14:0	7,640	75204,11	38778,15	3,65
3	7,798	3460,88	1791,64	0,17
4 C14:1	8,327	4808,96	2056,03	0,23
5	8,519	1334.73	580.62	0.06
6 C15:0	8,996	12010.80	4704.69	0.58
7	9 875	3253 22	989 77	0 16
8 C16 [.] 0	10 755	367832 79	106413 81	17 85
9	10,932	3258 61	871 31	0 16
10	11 083	7447.06	2017 67	0,10
11 C16:1 n 7	11 215	102056 12	28253 17	1 95
12	11 460	4700 72	1108 02	0.23
12	11,409	4100,12	2590.95	0,25
13	12,110	0034,14	2009,00	0,45
14	12,119	3027,10	1040,50	0,10
15	12,440	3104,73	183,57	0,15
16	12,602	9187,09	2311,81	0,45
1/	12,850	7480,94	1824,00	0,36
18	13,333	8109,71	2156,60	0,39
19	13,949	1642,23	455,92	0,08
20	14,063	1288,15	439,08	0,06
21 C18:0	15,357	37047,38	8252,50	1,80
22 C18:1n-9	15,842	493388,72	95010,47	23,94
23 C18:1n-7	16,016	52129,60	12621.04	2.53
24 C18:1n-5	16,380	7988,98	1899.67	0.39
25 C18:2n-6	17,069	31864.84	6789.51	1.55
26	17,958	4635,12	906,48	0.22
27 C18:3n-3	18,955	17329,96	3651.44	0.84
28 C18:4n-3	19 896	35435 87	7255 71	1 72
29 C20 1n-11	21 604	44562.97	8405 18	2 16
30 C20:1 n-9	21 749	123885.07	22752 75	6.01
31 C20 1n-7	22 022	9769.05	2039 59	0.47
32 C20:2n-6	23 235	6170 29	1112 08	0 30
33 C20:4n-6	24 784	25013.87	4499 21	1 21
34 C20:4n-3	26,704	10266.25	1808 10	0.50
25 C20.5n 2 EDA	20,200	125022 77	24505 29	0,50
35 C20.5II-5 EPA	20,903	133022,77	24393,20	7.40
30 022.111-11 27 022:4n 0	20,141	16955,22	20424,74	1,10
37 622.111-9	20,343	10000,20	5110,00	0,02
38 621.50-3	30,583	3824,78	078,99	0,19
39 022:50-3	33,826	31563,40	5320,18	1,53
40 C22:6n-3	34,829	188839,63	29567,30	9,16
41 C24:1	35,073	7868,84	1284,10	0,38

analysis of methylated fatty acids in *T.cicada*. C16:0 and C18:1 fatty acids (omega-9) constitute about 40 % of total lipids. Omega-3 fatty acids such as EPA, and DHA constitute about 15 % of total lipids.

Total proteolytic activity

The crustaceans extracts showed a protein content of 20 ± 2 mg/ml. At pH 7 and 30° C the proteolytic specific activity was determined to be 0.016 ± 0.05 U/min cm.

Fatty acid profiles

Lipids extracted according to Blight & Dyer (1959). Methylated fatty acids were analysed on a carbowax 20M-column on a Perkin Elmer GC equiped with a FIDdetector.

Peptidase activity assay

2 g (~ 40 individuals) of T.cicacda were mixed with 2 vol ice-cold Na-phosphate buffer, pH 7 and homogenized with Ultra Thurrax for 2 min followed by centrufugation at 10000 x g for 60 min, at 4°C to pellet debris. The supernatant were used directly for detemination of peptidase activty using 1.5 % azocasein solution as substrate (Handbook of food analytical chemistry, Willey and Sons, 2005).

Enzyme reaction were performed at 30°C for 30 min. Protein concentrations were determined using the Bicinchoninic Acid Kit for Protein Determination (Sigma) using BSA as a standard. Enzyme activity were determined in triplicate. One unit (U) of total proteolytic activity was $\Delta A_{440 \text{ nm}}$ /min cm.

Figure 3. Heavy metal chemical profile of both species

All metals (exception Pb) are below allowed EU maximum limits for feed and food for those substances which maximum limits have been established. The allowed maximum limit for Pb is 0,2 mg/kg. The level of Pb probably reflect the geographical proximity to local industry and thus may not be representative for amphipods and isopods in general.

Results from the screening of brominated flame retardants (PBDEs, PBDFs) PCBs, dioxines and furanes indicate that leves are below the allowed maximum values for feed and food (data not shown). Noteworthy is that the Σ PCBs (PCB ₇) is about 4.5 times higher (17 µg/kg) in *T.cicada* compared to the isopod *N.borealis* (4 µg/kg). **Figure 5:** Demonstration of proteolytic activity in crude protein extracts from *T.cicada* determined by hydrolysis of azocasein. Inactivated crude protein extracts were used as blanks.

Conclusions

- ✓ Possible to capture larger quantities of amphipods and isopopods using pot-technology developed by Møreforsking Marin.
- ✓ Low levels of undesirable substances. Local pollution probably contribute to undesired Pb levels.
- High protolytic activity suggest interesting bioactivity properties.

Future work

Continue screening of bioactivity:

- ✓ Enzymatic:
 - Inhibition studies of proteolytic activity.
 - Screen for novel lipases.
- ✓ Screen for bioactive lipids and peptides.

Acknowledgement: Project financed Handlingsprogram Verdiskaping - Møre og Romsdal county , Refa Frøystad Group (RFG) and Sanden Skjellprodukter.

